128 research outputs found

    Oscillation dynamics of embolic microspheres in flows with red blood cell suspensions

    No full text
    Dynamic nature of particle motion in blood flow is an important determinant of embolization based cancer therapy. Yet, the manner in which the presence of high volume fraction of red blood cells influences the particle dynamics remains unknown. Here, by investigating the motions of embolic microspheres in pressure-driven flows of red blood cell suspensions through capillaries, we illustrate unique oscillatory trends in particle trajectories, which are not observable in Newtonian fluid flows. Our investigation reveals that such oscillatory behavior essentially manifests when three simultaneous conditions, namely, the Reynolds number beyond a threshold limit, degree of confinement beyond a critical limit, and high hematocrit level, are fulfilled simultaneously. Given that these conditions are extremely relevant to fluid dynamics of blood or polymer flow, the observations reported here bear significant implications on embolization based cancer treatment as well as for complex multiphase fluidics involving particle

    Leader RNA of Rinderpest virus binds specifically with cellular La protein: a possible role in virus replication

    Get PDF
    Rinderpest virus (RPV) is an important member of the Morbillivirus genus in the family Paramyxoviridae and employs a similar strategy for transcription and replication of its genome as that of other negative sense RNA viruses. Cellular proteins have earlier been shown to stimulate viral RNA synthesis by isolated nucleocapsids from purified virus or from virus-infected cells. In the present work, we show that plus sense leader RNA of RPV, transcribed from 3' end of genomic RNA, specifically interacts with cellular La protein employing gel mobility shift assay as well as UV cross-linking of leader RNA with La protein. The leader RNA synthesized in virus-infected cells was shown to interact with La protein by immunoprecipitation of leader RNA bound to La protein and detecting the leader RNA in the immunoprecipitate by Northern hybridization with labeled antisense leader RNA. Employing a minireplicon system, we demonstrate that transiently expressed La protein enhances the replication/transcription of the RPV minigenome in cells. Sub-cellular immunolocalization shows that La protein is redistributed from nucleus to the cytoplasm upon infection. Our results strongly suggest that La protein may be involved in regulation of Rinderpest virus replication

    Estimation of the Healthcare Waste Generation During COVID-19 Pandemic in Bangladesh

    Get PDF
    COVID-19 pandemic-borne wastes imposed a severe threat to human lives as well as the total environment. Improper handling of these wastes increases the possibility of future transmission. Therefore, immediate actions are required from both local and international authorities to mitigate the amount of waste generation and ensure proper disposal of these wastes, especially for low-income and developing countries where solid waste management is challenging. In this study, an attempt is made to estimate healthcare waste generated during the COVID-19 pandemic in Bangladesh. This study includes infected, ICU, deceased, isolated and quarantined patients as the primary sources of medical waste. Results showed that COVID-19 medical waste from these patients was 658.08 tons in March 2020 and increased to 16164.74 tons in April 2021. A top portion of these wastes was generated from infected and quarantined patients. Based on survey data, approximate daily usage of face masks and hand gloves is also determined. Probable waste generation from COVID-19 confirmatory tests and vaccination has been simulated. Finally, several guidelines are provided to ensure the country\u27s proper disposal and management of COVID-related wastes

    Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence

    Get PDF
    Bangladesh is blessed with abundant solar resources. Solar power is considered the most desirable energy source to mitigate the high energy demand of this densely populated country. Although various articles deal with solar energy applications in Bangladesh, no detailed review can be found in the literature. Therefore, in this study, we report on the current scenario of renewable energy in Bangladesh and the most significant potential of solar energy’s contribution among multiple renewable energy resources in mitigating energy demand. One main objective of this analysis was to outline the overall view of solar energy applications in Bangladesh to date, as well as the ongoing development of such projects. The technical and theoretical solar energy potential and the technologies available to harvest solar energy were also investigated. A detailed techno-economic design of solar power applications for the garment industry was also simulated to determine the potential of solar energy for this specific scenario. Additionally, renewable energy policies applied in Bangladesh to date are discussed comprehensively, with an emphasis on various ongoing projects undertaken by the government. Moreover, we elaborate global insight into solar power applications and compare Bangladesh’s current solar power scenario with that of other regions worldwide. Furthermore, the potential of artificial intelligence to accelerate solar energy enhancement is delineated comprehensively. Therefore, in this study, we determined the national scenarios of solar power implementation in Bangladesh and projected the most promising approaches for large-scale solar energy applications using artificial intelligence approaches

    Interface-engineered templates for molecular spin memory devices

    Get PDF
    The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices(1, 2), opening avenues for developing multifunctional molecular spintronics(3). Such ideas have been researched extensively, using single-molecule magnets(4, 5) and molecules with a metal ion(6) or nitrogen vacancy(7) as localized spin-carrying centres for storage and for realizing logic operations(8). However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task(9). In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl(10), have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli(11, 12) (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet ; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets(13). Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development

    Robust Framework for PET Image Reconstruction Incorporating System and Measurement Uncertainties

    Get PDF
    In Positron Emission Tomography (PET), an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts

    Gastric adenocarcinoma in a patient re-infected with H. pylori after regression of MALT lymphoma with successful anti-H. pylori therapy and gastric resection: a case report

    Get PDF
    BACKGROUND: Helicobacter pylori (H. pylori) has been etiologically linked with primary gastric lymphoma (PGL) and gastric carcinoma (GC). There are a few reports of occurrence of both diseases in the same patient with H. pylori infection. CASE PRESENTATION: We report a patient with PGL in whom the tumor regressed after surgical resection combined with eradication of H. pylori infection. However, he developed GC on follow up; this was temporally associated with recrudescence / re-infection of H. pylori. This is perhaps first report of such occurrence. CONCLUSIONS: Possible cause and effect relationship between H. pylori infection and both PGL and GC is discussed. This case also documents a unique problem in management of PGL in tropical countries where re-infection with H. pylori is supposed to be high
    • …
    corecore